Doctoral program name

Artificial Intelligence, Data Science, and Visualization

Program Leader

Dr. Andras Hajdu

Objectives of Doctoral Programme

This doctoral program aims to provide PhD students with comprehensive and in-depth knowledge of the mathematical and algorithmic foundations of data science and artificial intelligence, as well as advanced methods in machine learning and deep learning. The program emphasizes the practical applications of artificial intelligence, along with related ethical, security, and interpretability considerations. A key objective of the program is to equip PhD students with the ability to extract meaningful information from large and complex datasets, interpret the results, and present them visually using various modelling and visualization techniques.

Academic and Research Fields

Data analysis and statistical modelling

Foundational models in probability and statistics. Parametric and non-parametric estimation methods. Regression techniques. Dimensionality reduction methods. Classification and predictive modelling. Time series analysis and modelling of seasonal patterns. Multivariate statistical methods. Handling heterogeneous and incomplete data. Model diagnostics, overfitting, and regularization. Visual analysis of static and dynamic data. Data structuring and preprocessing.

Machine and deep learning, artificial intelligence systems

Machine learning paradigms: supervised, unsupervised, and reinforcement learning. Classical learning algorithms (e.g., decision trees, k-NN, SVM, ensemble models). Deep learning architectures: feedforward and convolutional neural networks, recurrent networks, generative models, transformer-based architectures, and large language models. Optimization methods. Representation learning and dimensionality reduction. Graph-based learning. Explainable artificial intelligence. Ethical and secure Al systems. Agent-based modelling and intelligent simulation systems.

Visualization and visual analytics

Scientific and information visualization. Visualization pipelines and rendering techniques. Visualization of 2D and 3D data. Volume and surface-based rendering methods. Dimensionality reduction for visualization. Visualization systems and human-computer interaction. Interactive and exploratory visualization techniques. Visual pattern and anomaly detection. Visual analytics workflows and human decision support.

Image processing and shape recognition

Medical and biological image processing. Object recognition, pattern matching, and segmentation. Surface and volumetric reconstruction from projection images. Integration of multimodal sensor data in image processing. Biometric identification. Character recognition and text extraction from images. Image databases, indexing, and semantic querying. Content-based image and video analysis.

Geometric modeling and digital geometry

Parametric curves and surfaces. Subdivision techniques and surface smoothing. Projective and descriptive geometric transformations in computer graphics applications. 3D modelling, mesh generation, and preprocessing for finite element analysis. Discrete geometric representations. Mathematical morphology. Topological and algebraic features in digital image representations.

Members of the doctoral programme

Name	Academic degree	Topic poster	Instructor
Dr. Alexander Bacsó	CSc habil.	-	х
Dr. Agnes Eva Baran	PhD habil.	-	х
Bodroginé Dr. Marianna Zichar	PhD habil.	Х	х
Dr. Gergo Bogacsovics	PhD	Х	х
Dr. Miklos Emri	PhD habil.	х	-
Dr. Attila Fazekas	PhD habil.	Х	х
Dr. Andras Hajdu	DSc	Х	х
Dr. Lajos Hajdu	DSc	-	х
Dr. Sandor Hajdu	PhD	Х	-
Dr. Balázs Harangi	PhD habil.	Х	x
Dr. Miklos Hoffmann	DSc	Х	х
Dr. Laszlo Kovacs	PhD	Х	-
Dr. Roland Imre Kunkli	PhD	Х	х
Dr. Tamás Mankovits	PhD habil.	Х	x
Dr. Ildiko Papp	PhD habil.	Х	x
Dr. Andrea Pinter-Huszti	PhD habil.	Х	х
Dr. Szilvia Szeghalmy	PhD	-	х
Dr. Attila Tiba	PhD	-	X
Dr. Henrietta Toman	PhD	-	х
Dr. Robert Tornai	PhD habil.	Х	х
Dr. Janos Toth	PhD	Х	х

Subjects

	Subject name	Credit	Subject teacher
Compulsory elective subjects	Big Data processing	2	Dr. Henrietta Tomán
	Computer-aided design and simulation	2	Dr. Ildikó Papp
	Deep learning	2	Dr. Balázs Harangi
	Discrete mathematics	2	Dr. Lajos Hajdu
ţį	Image processing algorithms	2	Dr. János Tóth
lec	Information and scientific visualization	2	Dr. Marianna Bodroginé Zichar
<u>ح</u>	Machine learning	2	Dr. Balázs Harangi
lso	Mathematics of data science	2	Dr. Ágnes Éva Baran
ndı	Multimodal data analysis	2	Dr. András Hajdu
lo:	Optimization of artificial intelligence systems	2	Dr. András Hajdu
	Topics in geometry	2	Dr. Sándor Bácsó
	Accelerator architectures	2	Dr. Róbert Tornai
	Advanced computer graphics	2	Dr. Róbert Tornai
	Agent-based systems and simulation	2	Dr. András Hajdu
	Applied descriptive and projective geometry	2	Dr. Sándor Bácsó
	Artificial intelligence security	2	Dr. Andrea Pintér-Huszti
	Bioinformatics	2	Dr. András Hajdu
S	Computer-aided modelling of curves and surfaces	2	Dr. Miklós Hoffmann
ect	Data fusion models	2	Dr. Henrietta Tomán
ubj	Deep learning on graphs	2	Dr. Attila Tiba
Elective subjects	Digital geometry and mathematical morphology	2	Dr. Attila Fazekas
ţ.	Explainable and ethical artificial intelligence	2	Dr. János Tóth
le l	Finite element analysis	2	Dr. Tamás Mankovits
"	Generative artificial intelligence	2	Dr. Gergő Bogacsovics
	Geospatial intelligence	2	Dr. Marianna Bodroginé Zichar
	Image processing in medicine and biology	2	Dr. Attila Fazekas
	Large language models	2	Dr. Gergő Bogacsovics
	Low-level image processing	2	Dr. Szilvia Szeghalmy
	Sensor-based data collection and processing	2	Dr. Balázs Ujvári
	Visual analytics methods	2	Dr. Roland Imre Kunkli